عنوان مقاله

فسفرن، ماده 2 بعدی جدید با تحرک پذیری بالای حامل



خرید نسخه پاورپوینت این مقاله


خرید نسخه ورد این مقاله



 

فهرست مطالب



چکیده
مقدمه
محاسبات ای بی اینیتیو
ساخت وسیله
نقش موانع Schottky درترانزیستورهای فسفرن




بخشی از مقاله

نقش موانع Schottky درترانزیستورهای فسفرن
عمدتاً به خاطر دوپینگ سورس/ درین، کنتاکت های فلزی روی مواد 2 بعدی معمولاً موانع Schottky قابل ملاحظه ای در نقطه اتصال فلز/ نیمه رسانا تشکیل داده و ترانزیستورهای فسفرن چند لایه را به سرعت به ترانزیستورهای Schottky نه MOSFETs مرسوم و متداول تبدیل می کنند.





خرید نسخه پاورپوینت این مقاله


خرید نسخه ورد این مقاله



 

کلمات کلیدی: 

Phosphorene: A New 2D Material with High Carrier MobilityHan Liu1,2, Adam T. Neal1,2, Zhen Zhu3, David Tománek3, and Peide D. Ye1,2 *1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA2 Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA3 Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA* Email of the corresponding author: yep@purdue.edu
Preceding the current interest in layered materials for electronic applications, research in the 1960’s found that black phosphorus combines high carrier mobility with a fundamental band gap.1 We introduce its counterpart, dubbed few-layer phosphorene, as a new 2D p-type material. Same as graphene2,3 and MoS2,4 phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct and appreciable band-gap that depends on the number of layers. Our transport studies indicate a carrier mobility that reflects its structural anisotropy and is superior to MoS2. At room temperature, our phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm2/V·s, and an on/off ratio up to 104. We demonstrate the possibility of phosphorene integration by constructing the first 2D CMOS inverter of phosphorene PMOS and MoS2 NMOS transistors.Our findings are in-line with the current interest in layered solids cleaved to 2D crystals, represented by graphene and transition metal dichalcogenides (TMDs) such as MoS2, which exhibit superior mechanical, electrical and optical properties over their bulk counterparts and open the way to new device concepts in the post-silicon era.2-5 An important advantage of these atomically thin 2D semiconductors is their superior resistance to short channel effects at the scaling limit.6 Massless Dirac fermions endow graphene with superior carrier mobility, but its semi-metallic nature limits seriously its device applications.7,8 Semiconducting TMDs, such as MoS2, do not suffer from a vanishing gap9,10 and have been applied successfully in flexible n-type transistors4 that pave the way toward ultimately scaled low-power electronics. Recent studies on MoS2 transistors have revealed good device performance with a high drain current of up to several hundred mA/mm, a sub-threshold swing down to